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Biologic Effects of Oil Fly Ash 
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Epidemiologic studies have demonstrated
increased human morbidity and mortality
(1) with elevations in the concentration of
ambient air particulate matter (PM). Fine
particles, with mass median aerodynamic
diameters (MMAD) less than 2.5 µm, are
more closely associated with adverse health
effects of PM than coarser particles (2). Fine
particles often represent anthropogenic
sources, as they frequently result from an
incomplete oxidation of carbonaceous mate-
rials. The inorganic residue that remains
after burning such a substance is termed “fly
ash.” Fly ash from fossil and waste fuel com-
bustion contributes more than 2.5 × 105

tons annually to the ambient air PM burden
in the United States (3). Although the ash
content of oil used for electric power genera-
tion is two to three orders of magnitude less
than that of coal, many oil-fired power
plants employ few or no particle emission
abatement technologies (4). Consequently,
fugitive fly ash from the combustion of oil
and residual fuel oil contributed 76,000 and
49,000 tons, respectively, to the national
ambient particle burden in 1992 (5). 

Oil fly ash is frequently less than 2.5 µm
in MMAD. This combustion product is
principally inorganic. However, analyses of
fly ashes are performed after complete oxida-
tion of the sample to stable metal oxides.
This can lead to the incorrect conclusion
that fly ashes are simple, insoluble, and unre-
active pollutant products. Comparable to
ambient air pollution particles, oil fly ash is
chemically complex and includes sulfates, sil-
icates, carbon- and nitrogen-containing

compounds, contaminants of the fuel, and
additives. Metals, including iron, vanadium,
and nickel, are present in high concentra-
tions as water-soluble salts in fly ash (6).

Tropospheric concentrations of vana-
dium are often employed as a marker of the
contribution of oil fly ash to the total PM
level in an air shed (6). In a rural setting,
vanadium in ambient air can vary between
25 and 75 ng/m3, whereas in an urban envi-
ronment, this value is 60–300 ng/m3 and can
increase 6-fold in the winter (7). Although
this metal is an essential trace element for
humans and certain animals, it occurs
sparsely in nature (8). Certain plants can
have higher levels of vanadium (e.g., sugar
beets, vines, beech and oak trees), but the
greatest concentrations are found in lower
marine animals (e.g., shellfish) (8). Because
oil is derived from fossilized marine organ-
isms, vanadium is found in this fuel at a high
average concentration and, subsequently, in
its fly ash (Figure 1A,B). Higher contents of
the metal occur in the heavy oils left (i.e., the
residual) after the more volatile fractions such
as petrol, paraffin, and diesel oil have been
distilled, hence the term “residual oil” fly ash
(ROFA) (8). In addition to metals, sulfates
are in abundance (Figure 1A,C). 

ROFA is remarkable in its capacity to
induce lung injury in experimental animal
models (9). Because ROFA is rich in metals,
with little organic component, it has been
particularly useful as a surrogate for ambient
air PM in studies of biologic effect, testing
the hypothesis that metals mediate the
biologic effects of air pollution particles. 

The mechanism of lung injury after
exposure to ambient air PM is not known.
Injury has been postulated to be mediated
either by metal-catalyzed oxidant generation
or by metal ion dysregulation of phosphoty-
rosine metabolism, or possibly elements of
both mechanisms (Figure 2) (10). These
events are then proposed to result in phos-
phorylation-dependent cell signaling, an
activation of specific transcription factors
such as nuclear factor kappa B (NFκB) and
AP-1, an increased expression of proinflam-
matory proteins whose genes have binding
sites for these transcription factors in their
promoter regions, and finally leading to an
inflammatory injury to the lung. We review
the biologic effects of oil fly ash on both cells
and tissues, specify the association of this
effect with vanadium, and opine on the rele-
vance of this investigation to human mor-
bidity and mortality following exposure to
air pollution particles.

Effects of Residual Oil Fly Ash
on Cells
Epithelial cells of the respiratory tract not
only function to provide a structural barrier
to inhaled agents but are now recognized as
critical participants in the function of the
lung, partly through their production of
inflammatory mediators. Epithelial cells take
up ROFA into pits/vesicles that appear to be
clathrin-coated (Figure 3A,B). The particle
then generates oxygen-based free radicals to
present an oxidative stress to the cell (11,12)
comparable that in to acellular systems (9).
This cellular production of oxidants can be
inhibited by either the metal chelator defer-
oxamine or the antioxidants N-acetylcysteine
and dimethylthiourea (DMTU). Exposure to
the ash results in increased epithelial perme-
ability, cell detachment, and a lytic injury
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with release of lactate dehydrogenase (13).
The dependence of these cytotoxic effects of
ROFA on the generation of an oxidative stress
is supported by the protective effect of the
antioxidant DMTU on cell permeability after
exposure to this emission source PM (13,14).

As mentioned earlier, incubation of
respiratory epithelial cells with ROFA is
associated with the initiation of phosphory-
lation-dependent signaling reactions that
may be modulated by specific redox changes
(15). Interestingly, redox-active vanadium
compounds can reproduce these events,
whereas catalytically active iron and nickel
compounds have no effect (15). One tran-
scription factor known to be associated with
oxidant responses is NFκB. NFκB is nor-
mally sequestered in the cytoplasm as an
inactive multiunit complex bound by the
inhibitory protein IκB. In the nucleus,
NFκB binds to promoter and enhancer
regions of a multitude of genes involved in
the inflammatory response, including
cytokines, chemokines, and growth factors.
It is postulated that these genes then func-
tion to initiate, amplify, and coordinate the

inflammatory response. ROFA induces
phosphorylation and degradation of IκB,
with a resulting translocation of the active
dimer into the nucleus in respiratory epithe-
lial cells (16). ROFA-induced activation of
NFκB is blocked by metal chelators and free
radical scavengers, suggesting that this acti-
vation is dependent on the generation of
oxidants (16).

Respiratory epithelial cells exposed to
either ROFA or vanadium, but not iron or
nickel, showed increased messenger RNA
(mRNA) and protein expression of numer-
ous cytokines, including interleukin (IL)-6,
IL-8, and tumor necrosis factor (17). In
addition, prostaglandin H synthase 2 expres-
sion is induced, and there is concomitant
enhanced secretion of prostaglandins E2 and
F2α from normal human airway epithelial
cells exposed to ROFA (18). As with NFκB
activation, deferoxamine and an antioxidant
diminish the release of inflammatory media-
tors induced by ROFA in these cells (17).

Similar to epithelial cells, ROFA expo-
sure can result in an intracellular oxidant
stress within alveolar macrophages, which
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Figure 1. Electron microscopy of ROFA (A) with mapping for vanadium (B) and
sulfur (C). Both vanadium and sulfur are abundant in the ROFA particles.
Magnification is approximately 3,800×. ROFA was imaged in the secondary
electron mode by scanning electron microscopy using a Cambridge S-200
scanning electron microscope (LEO Electron Microscopy Inc., Thornwood,
NY). Energy dispersive X-ray microanalysis was performed on the same spec-
imens using a Kevex 7000 EDS system (Kevex-Ray, Burlingame, CA). The
microscope and EDS systems were interfaced to an external Power
Macintosh 8600 imaging system using 4pi Analysis spectral engine hardware
(4pi Analysis Inc., Durham, NC) and NIST DTSA software (National Institute of
Standards and Technology, Gaithersburg, MD) for digital image collection,
X-ray spectrum acquisition, analysis, and preparation of X-ray maps.

Figure 2. Schematic of the proposed mechanism
for the biologic effect of ROFA. 
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may contribute to cellular activation and
production of proinflammatory mediators
(19–21). The primary source of these oxi-
dants is likely the NADPH oxidase activity
in the alveolar macrophage itself. However,
transition metals may also present direct
oxidative stress to this cell (22). Relative to
the epithelial cells, cytotoxicity appears to
occur at lower particle concentrations, and
the magnitude of cytokine release is reduced
(23). Comparable to respiratory epithelial
cells, the oxidant burst and mediator release
after incubation of macrophages with ROFA
appears to be driven by vanadium and can
be inhibited by deferoxamine and/or antioxi-
dants, suggesting both intrinsic and extrinsic
sources for radical generation by alveolar
macrophages (19,21).

Physiologic, Biochemical,
Cellular, and Molecular Effects
of Residual Oil Fly Ash 
in Animals

In vivo oxidative stress in the lungs of ani-
mals instilled with ROFA has been verified
by electron spin resonance (ESR) (24). This
ESR signal can be reproduced by treatment
with vanadium, but not iron or nickel com-
pounds (24). The activation of both phos-
phorylation-dependent kinases (i.e.,
mitogen-activated protein kinases) in the rat
lung following instillation with ROFA has
been reported (25). Figure 4 shows the
effect of ROFA on the translocation of the
NFκB subunit P65 and phosphorylation of
the transcription factors cAMP-responsive
element binding, activating transcription
factor 2, and c-Jun in the rat lung.
Furthermore, mRNA and protein expres-
sion of mediators of inflammation and
fibrosis are also elevated in these tissues fol-
lowing ROFA instillation (26). Finally,

exposure to the emission source particles
results in a dose-dependent influx of inflam-
matory cells (9,27). This is almost always
neutrophilic, but occasional eosinophilic
infiltration into the lower respiratory tract
has been noted (27). The peak of this influx
occurs 18–24 hr after exposure.

Injury to the lung in the animal is evi-
dent within 24 hr of exposure, with detach-
ment of ciliated and mucus cells from the
epithelial lining of the terminal bronchioles
accompanied by hemorrhage. Inhalation or
instillation of an equivalent concentration of
ROFA evokes pulmonary inflammatory
responses that are qualitatively and quantita-
tively similar (28). Whereas incursion of
inflammatory cells appears to best correlate
with vanadium exposure, injury assessed as
protein concentrations in the lavage fluid
correlates best with the nickel content in
ROFA (29). The cellular influx persists 96
hr later, and resolution occurs slowly (9).
Instillations of larger amounts of oil fly ash
(500 µg or greater) can induce a rapid onset
of noncardiogenic pulmonary edema (30). 

Exposures to an aqueous extract of
ROFA produce effects very similar to those
induced by unfractionated ROFA (31). In
marked contrast, the water-insoluble com-
ponent has minimal effect on the lungs of
the rats (31). In animal models of compro-
mised cardiopulmonary function (e.g.,
spontaneously hypertensive rats), lung
injury after ROFA can be considerably more
extensive (3,32,33). Pulmonary inflamma-
tory injury induced by ROFA is repro-
ducible by instillation of a mixture of
soluble forms of vanadium, nickel, and iron
in the proportions found in a saline leachate
of ROFA (31). Pretreatment with DMTU
significantly decreased the number of neu-
trophils present in bronchoalveolar lavage
fluid, further supporting metal-catalyzed

oxidative stress as a factor determining
inflammatory injury after ROFA instillation
in animals (13). Finally, animals exposed to
vanadium-containing compounds demon-
strate neutrophilic inflammatory injury of
the bronchi and the distal lung accompa-
nied by a significant airflow limitation, con-
firming that it is a significant determinant of
injury presented by ROFA in the respiratory
system (34). These results suggest that tran-
sition metals play a key role in mediating
the injury seen after ROFA instillation. 

Inflammatory lung injury after ROFA is
accompanied by airway hyperreactivity (35)
and an increase in susceptibility to infec-
tions (9) in normal animals. The metal
composition of the ash appears critical to
the development of airway hyperreactivity,
as assessed by acetylcholine challenge (9). In
addition, there are effects of ROFA on sen-
sitization to allergens in animal models of
pulmonary allergy, with significant eleva-
tions in eosinophils, IL-10, antigen specific
immunoglobulin E, and associated immedi-
ate bronchoconstriction responses to anti-
gen challenge (36–39). This effect can be
reproduced by the metal leachate of ROFA
as well as individual metallic constituents of
ROFA (35) and can be abrogated by
DMTU pretreatment (40). These results
suggest that the oxidative stress presented by
metals present in ROFA is responsible for
the airway hyperreactivity and sensitization
to allergens (41). 

There are also effects of ROFA exposure
on heart function, with a bradycardic
response in healthy animals that persists up
to 48 hr after instillation, implicating both
conductive and hypoxemic arrhythmogenic
mechanisms leading to cardiac-related deaths
(30). A related extrapulmonary impact of
ROFA is an elevation in plasma concentra-
tions of fibrinogen in exposed rats (42).
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Figure 3. Incubation of BEAS-2B cells (90–100% confluence) in plastic, 12-well plates (KGM; Clonetics, San Diego, CA) with 200 µg ROFA/mL for 24 hr results in
uptake of particulate components of the ash. Coated pits are evident at the membrane (A) and putative clathrin-coated vesicles are shown with components
enclosed (B). Magnification is approximately 1,500×.
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Figure 4. Transcription factor activation in lung tissue following instillation of ROFA. Male Sprague-Dawley rats were intratracheally instilled with 0.5 mL saline
alone (left panels) or saline containing 0.5 mg ROFA for 4 hr (middle panel) or 24 hr (right panel). Lungs were formalin-fixed, paraffin-embedded, sectioned, and
immunostained using anti-P65, anti–phospho-CREB, anti–phospho-ATF-2 or anti–phospho-c-Jun antibodies. Four hr after the treatment, pronounced immuno-
staining for all transcription factors is seen along the airway epithelium and parenchymal (insets) tissue is evident. Consistent with the mechanism of activation,
P65 and P-ATF-2 staining appear to be nuclear and perinuclear. (Continued on next page)
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Human Injury after Exposure
to Residual Oil Fly Ash 

Relative to animal models, considerably less
is known about the effects of injury in
humans after exposure to ROFA. Lung
injury after human exposure to oil fly ash has
occurred predominantly after occupational
exposures of workers engaged in the mainte-
nance of oil-fired boilers in power generating
stations (43–49). The clinical presentation of
these workers has been termed “boilermakers’
bronchitis” or “vanadium bronchitis.”
Individuals exposed to high concentrations
of ash provide a history of eye irritation, sore
throat, hoarseness, cough, dyspnea, wheez-
ing, and, infrequently, symptoms consistent
with pneumonitis. Physical examination
reveals rhinitis, conjunctivitis, and wheezing.
Within 24 hr of exposure to ROFA, dose-
dependent decreases in indices of pulmonary
function have been observed, including
diminished forced vital capacity, forced expi-
ratory volume in 1 sec, and forced expiratory
flows (48,49). Bronchoscopic examination
shows a bronchitis with erythema and dis-
charge in ROFA-exposed individuals.
Symptoms and signs subside, and pul-
monary function decrements can resolve,
within a few days or weeks of cessation of
the exposure (47).

As a result of the comparable clinical
presentations, physiology, and pathology of
injury after ROFA and vanadium exposures,
it has been suggested that this metal is a major
component responsible for toxicity of this air
pollution particle in humans. Vanadium pen-
toxide (V2O5) is widely used as a catalyst for a
variety of reactions and in the production of
high-strength steel alloys (50). The first report
of a human exposure to vanadium was in
1911 (50). “Vanadiumism” was defined as a

chronic intoxication with the principal
evidence of toxicity observed in the lungs,
kidneys, and gastrointestinal tract (50).
Exposures occur during the mining, separa-
tion, and use of V2O5 in the steel and
chemical industries. Exposure occurs mostly
via inhalation, and vanadium is excreted in
the urine, with a smaller amount in the
feces. Vanadium dust causes symptoms of
respiratory tract irritation with conjunctivi-
tis, sneezing, rhinorrhea, sore throat, and
chest tightness (50–52). The cough is
prominent and characteristically dry and
paroxysmal (50). Examination of vanadium-
exposed individuals reveals a greenish discol-
oration of the tongue, wheezing, rhonchi,
and rales (51,52). An increase in the inflam-
matory cells in nasal smears and biopsies
from the nasal mucosa accompanies symp-
toms of respiratory tract irritation. There can
be concurrent changes in pulmonary func-
tion indices associated with vanadium expo-
sure (51,52). Vanadium workers are more
susceptible to tuberculosis and can rapidly
succumb to this disease (50). At high expo-
sure levels, the lungs become highly con-
gested and show a marked destruction of
the alveolar epithelium (50). At high vana-
dium exposures, hemorrhages are frequent
and severe, even causing death (51,52).
Workers who died from vanadium exposure
showed congested lungs with destruction of
the alveolar epithelium (51,52).

Relevance to Injury after
Ambient Particulate Matter
At the cellular level and in animal models, a
majority of the investigation supports the
postulate that transition metals found in
ROFA (especially vanadium) participate in
Fenton-like chemical reactions to produce
reactive species. This is associated with

tyrosine phosphorylation, intracellular
signaling leading to NFκB translocation and
activation of other transcription factors,
induction of inflammatory mediator expres-
sion, and inflammatory lung injury. Cardiac
and systemic effects result from a dissemina-
tion of components of ROFA to extrapul-
monary tissues, reflexes, or hypoxemia. It is
also evident that vanadium in ROFA
accounts for the greatest portion of this
effect. Vanadium as a contributor to the tox-
icity of air pollution particles may be specific
to ROFA. In support of a potential role of
vanadium in the biologic effect of ambient
air PM, epidemiologic studies have shown a
correlation between vanadium levels in the
air and the incidence of mortality from
bronchitis and pneumonia in British cities
(53). However, an extrapolation of the body
of investigation on ROFA to the health
effects of ambient air PM is complicated by
the fact that ambient air PM collected from
numerous environments has very small
amounts of vanadium. Despite this limita-
tion, data continue to accumulate, suggest-
ing that ambient air and other emission
source particles follow a comparable mecha-
nism of action as ROFA, involving phospho-
rylation reactions (54), transcription factor
activation (54), mediator release (55), and
inflammatory injury (56).
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